
AD-R189 427 OBJECT-ORIENTED DESIGN IN NUMERICAL LINEAR ALGEBRA(U) 1.'i
WASHINGTON UNIY SEATTLE DEPT OF STATISTICS

r ul7-LRISSIFEDJ A "CDONALD SEP 97 TR-109 NGOSL4-86-K-0169 /121 N

UN LAS IIED F/G ±2/1

1.0.

1111.25 111~ *~

% % %

IMPLEMENTATION IN COMMON LOOPS 14

(dafmathod mul ((tr Invers-of-Uppr-Triangular)
(v Vector))

(loop with r =(make-array (range tr))
with uv (matrix (sire tr))
wvith n =(domain tr)

.. hanik e1beh in In,

Object-oriented design
in numerical linear algebra. *

JOHN ALAN McDONALD
Dept. of Statistics, University of Washington

September 6, 1987

Abstract

Straightforward application d object-oriented design to standard DrIC

algorithms in numerical linear algelaa improves clarity and expres-
uivenem, without sacrificing speed or accuracy.

Ac.cs:crI('" -c,r i

NTIS CFA~tDTIC T, S

U i inr, r,: ,'d[] l

ist
2.q

*This reearch was supported by the Office of Naval Research under Young Investigator
award N00014-86-K-0069, the Dept. of Energy under contract F00685-ER2500.

O.l

I
I.,

1 INTRODUCTION 2

1 Introduction

The underlying premise of this paper is that quantitative, scientific com-
puting needs and deserves good programming languages and programming
environments-as much as artificial intelligence.

I hope to show how straightforward application of object-oriented design
to standard algorithms in numerical analysis yields immense improvement in
clarity, without sacrificing speed or accuracy. My example is an elementary
problem from numerical linear algebra-solving system. of linear equations
via gaussian elimination. I will use a linear algebra system called Cactus,
which is implemented in Common Loops[2,3], an object-oriented extension
of Common Lisp[14].

Object-oriented programmmg is sometimes said to only be useful for
graphics and user interface and, perhaps also, knowledge representation and
database management. Even Lisp machine manufacturers seem to think that
Fortran is somehow superior for traditional, quantitative scientific comput-
ing. When numerical software is written in Lisp (eg. [12]), the author usually
adopts a Fortran or Algol style and neglects the potential for designing more
appropriate abstractions[lj.

Cactus is based on a collection of liear trastsformaties classes and appro-
priate generic operations. This level of abstraction greatly simplifies many
algorithms in numerical linear algebra. Traditional linear algebra systems
(Linpack[5], APL) operate at the level of arrays and confound the details of
where data is kept with how it is meant to be used.

I am developing Cactus primarily as a building block of a Lisp-based sci-
entific computing environment. In addition, I hope that it will lead to more
serious consideration for numerical computing in Lisp (and Smalltalk[7],
etc.) and help to put to rest the notion of coupled sylstems, where sym-
bolic computing is done in Lisp and serious numerical computing is done
in another language (or even on another machine). The idea of coupled
system arises because, although existing Lisp environments have much to
offer scientific computing, they have two serious deficiencies when compared
to more traditional environments (eg. Unix plus C and Fortran):

o No analogs of numerical subroutine libraries like Linpack, Eispack, etc.
[5,13,6].

* Poor performance in arithmetic, especially with double precision or
complex numbers.

tN -o

2 A SIMPLE PROBLEM 3

Building collections of basic numerical software should be done by ex-
perts, which requires convincing numerical analysts that there are sufficient
advantages that it is worth re-implementing (and re-designing!) the existing
subroutine libraries. However, I will present the case to numerical analysts
in another paper.

This paper is instead aimed at the designers and implementors of object-
oriented programming systems. One purpose is to convince them to provide
efficient arithmetic. But perhaps more interesting is the fact that linear
algebra is a fairly novel domain for object-oriented programming. As a re-
sult, Cactus provides another perspective on what's important in an object-
oriented programming system. In particular, numerical linear algebra re-
quires some of the relatively unusual features of Common Loops-including
methods that dispatch on several arguments, changing or modifying the
claw of an existing instance, and specialized method combination rules-
which are miming or les well supported in older object-oriented languages
like Smalltalk or Flavors[10,1].

This paper assumes the reader is familiar with Lisp and object-oriented
programming, specifically as embodied in Common Loops. I will review, in
passing, some elementary numerical linear algebra.

2 A simple problem

Suppose
A: 2" -.+R"'

is a linear transformation, b E A"' and we want to solve for z - 21 such
that:

Az-b.

A mathematician would probably view this as a vector equation. If-to make
things easy-we assume that A is square and invertible, then the obvious,
naive solution is to invert A and apply it to b:

z - A-b.

Unfortunately, this isn't such a good idea in floating point arithmetic[5,8,15].
The problem is that we can only compute an approximation A-1 . For some
A's,

A *--b

} ~ ~

2 A SIMPLE PROBLEM 4

(setf a #2a((2.0 3.O6 9.04 1.04)
(8.0 3.0.6 2.04 1.04.6)
(2.0 9.0.6 1.0. 1.0.)
(3.0 5.o6 7.0*6 9.04)))

(setf x #(0.0 1.0 100.0 10000.0))

(setf b (matrix-multiply a x))

(setf a-i (matrix-inverse a))

(sef x-tilde (matrix-multiply a-1 b))

x-tilde --+ #(-64.0 0.9993286 100.00006 10000.002)

Figure 1: An example of unstable inversion.

2 A SIMPLE PROBLEM 5

maybe be far from the true solution z. See figure 1 for an example.

To get reliable solutions, every numerical linear algebra text recom-
mends:

" Avoid computing inverses.

" Think in terms of solving a system of linear scalar equations, rather
than a single vector equation. (Linpack is described not as a linear
algebra package, but as "a collection of Fortran subroutines which an-
alyze and solve various systems of simultaneous linear equations.' 151)

" Notice that we can directly solve systems of linear equations with
special structure:

If U is upper triangular (Uj is zero if i > j). then

Uft ftz f = b nn,
U,.-.., -.iz,.-.i + UR_,,Rzn = -,

and so on, which means that we can first solve for z. and substitute
it in the second equation to get zn, and so on. This is called back
sbstitution.

If L is lower triangular (Lj is zero if > i), then we can solve Lx = b
with a similar forward elimination.

" If we can decompose A -, LU, then we can solve Az = b in two steps,
first solving Ly = b and then U: = V.

* Then the problem is to find an accurate and efficient way to carry out

the LU decomposition.

The usual recommendation is to use #essian elimination with partial
pivoting. The 'partial pivoting' is introduced to improve numerical
stability. Instead of the simple LU decomposition, we get something
a bit more complicated:

A -. (PoGoPG1 ... PG,,U).

where the Ph's are pivot transformations (permutations) and the Ga's
are elementary lower triangular (gauss) transformations. So, concep-
tually, the procedure is to solve a sequence of linear systems. The
system involving U is solved by back substitution; the ones involving
P and G1 can be solved more directly.

- - :. . . ,. V V*

2 A SIMPLE PROBLEM 6

(multiple-value-setq (p lu) (lu-decomposition a))

p- #(1 2 0 3)
lu - #2A((0.25 0.27272728 8363636.5 545454.56)

(8.0 3000000.0 2000000.0 1000000.0)
(0.2S 8250000.0 500000.0 7so000.0)
(0.375 0.46969697 0.7192029 7880435.0))

(lu-solve p lu b) -. #(0.0 0.9999205 100.000015 10000.0)

: The true answer:
x -. #(0.0 1.0000000 100.000000100.0)

Figure 2: Using a Fortran-style LU decomposition.

In addition to improved numerical stability, this approach is 2-3 times as fast
as explicitly computing the inverse matrix and then using matrix multiply to
apply it to b (because computing the inverse matrix is equivalent to solving
several systems of equations).

Figure 2 shows what happens when we use an LU decomposition on
the data from figure 1. (Although the example is expressed in Lisp, it has
essentially the same structure as corresponding Fortran routines in Linpack.)

Although we are happy to get the right answer, we may be troubled by
the mysterious arrays p and lu:

e p is the permutation vector that corresponds to the composition of the
Pn's. Factoring out the P6's in this way relies on subtleties in the way
they are constructed and related to the Gh'e.

* lv packs together the GO's and U in one array. The upper triangle of
iu is U; The kth sub-diagonal column of lu holds the non-zero elements
of a vector ah (whose first k elements are implicitly zero) that can be

!

"S - * im* N' V V a. .

3 WHAT'S WRONG WITH THIS? 7

used to construct the Gauss matrices G1:

Gb = I + aiiet

(el is the kth canonical basis vector of X". lu-solve uses the aO's
directly and never explicitly forms the corresponding G1.

3 What's wrong with this?

There are two problems with even the best Fortran subroutine libraries (like
Linpack):

" It is difficult to modify a routine like lu-decomposition to produce some-
thing slightly different.

" It is difficult to use the results of lu-decomposition in a way that's
different from what the designer intended.

Both cases require understanding how the contents of the two arrays, p and
lu are meant to be interpreted. This information is buried in the code for
lu-decomposition and lu-solve. Understanding the code for an LU decompo-
sition requires following a trail that starts with a abstract, often geometric,
overview in a numerical analysis text, through a fairly clean "implemen-
tation" in Algol-like pseudo-code, to finally the dirty realities of Fortran
IV control structures and parameter pasing tricks. Information about the
meaning of what going on is stripped out at each stage. The final Fortran
program has very little resemblance to the abstract description we started
with.

Of course, Linpack, Eispack, etc. were never intended to be anything
else other than kits of black boxes. One sometimes hears the argument that
numerical linear algebra is sufficiently well understood that there is never
reason to modify the existing libraries. Even if this were true for linear
algebra, it's definitely not the case for important applications of linear alge-
bra, like optimization or statistical data analysis, and that require adjusting,
tuning, modifying, or re-building algorithms for each specific problem.

'pp

4 LINEAR TRANSFORMATIONS 8

4 Linear transformations

The primary reason why traditional numerical packages are difficult to mod-
ify is that they are not written at the right level abstraction (which unavoid-
able when working in Fortran). In the case of linear algebra this means the
failure to distinguish the abstract notion of a linear transformation 19] from
its concrete representation as an array or some part of an array.

By definition, A is a linear transformation taking 2" 1-4 Rm, if, for all
z,yE " and a, b E R,

A(ax + by) = aAz + bAy.

A machine representation of a linear transformation must provide an encod-
ing of its state and methods for essential operations:

" Transformation of a vector: Az = y.

" Scalar multiplication: (aA)z = A(az).

" Sum: (A + B)z = Az + Bz.

" Composition: (AB) = A(Bz).

Although "matrix algebras is often used interchangeably with "linear
algebra," in algorithms like the LU decomposition, matrices serve only as a
storage mechanism, and an inconsistantly used storage mechanism at that.
The canonical representation of a linear transformation is the matrix of
its elements (in the canonical basis for 2") and the composition method,
for example, is matrix multiply. However, some linear transformations are
better served by an alternate representation. The key entities in an LU
decomposition are all linear transformations, but not all are matrices:

* A is represented by the matrix a.

* U is represented by the upper triangle of lu.

* Gv is represented by the sub-columns of Iu.

Sfl Pa is represented by p.

V.~~~~ P_ 'Vj . %*** .-

5 IMPLEMENTATION IN COMMON LOOPS 9

The natural way to solve Az = b, is using an inverse: z -- A-1 b (assum-
ing, again to make things easy, that A is both square and invertible). It is
bad practice to do this if both A and A must be matrices, but that's no
longer true if we can represent A 1 by an instance of an appropriate Inverse-
Transformation class. The state of A- 1 would be represented by something
equivalent to the lu and p produced by lu-decomposition and A-'s method
for transforming a vector would be equivalent to lu-solve.

5 Implementation in Common Loops

Cactus deals only with transformations from R" o-. 2 m . Linear transfor-
mations are represented in Cactus by instances of a Common Loops linear
transformation class.

Two examples of simple linear transformation classes are given in fig-
ure 3. All linear transformation classes inherit from the abstract class Linear-
Transformation, which establishes a common protocol and default methods.
The Matrix-Transformation class provides the canonical representation, in
essence just wrapping a Common Loops object around a two-dimensional
Common Lisp array kept in the matrix slot. Upper-Triangular-Transformation
inherits the matrix slot from Matrix-Transformation, but its methods assume
that the subdiagonal elements are zero to save roughly half the work in
typical operations.

Vectors are represented in Cactus by one-dimensional Common Lisp ar-
rays of numbers.

The algebra of linear transformations on a vector space requires four
operations: scalar multiply, vector transform, compose, and sum. The first
three are represented by a generic multiply function: mul. The sum of
linear transformations is represented by the generic function: sum. Figure 4
compares the methods for transforming a vector, which are identical, except
that the inner loop for Upper-Triangular-Transformation avoids unnecessary
multiplies and adds of 0. (The iterations are expressed using the LOOP
macro of Burke and Moon[4].)

In Cactus, we can solve an equation like Ax = b, not as a system of linear
equations, but as a vector equation, z -- A- 1 b (for square and invertible
A's). To do this, we represent A by an instance of an appropriate inverse
transformation class. Figure 5 shows the result for the data from figure 1.

N

e 1 ,

5 IMPLEMENTATION IN COMMON LOOPS 10

(defdass Matrix-Transformation

super dasses
(Linear-Transformation)

slots
(matrix))

(defdass Upper-Triangular-Transformation

super classes
(Matrix-Transformation)

;: slots
0)

Figure 3: Two simple transformation classes

S

'a

,-
5

* S ~.,
S.,

5 IMPLEMENTATION IN COMON LOOPS

(defmethod mul ((tr Matrix-Transformation)
(v Vector))

(loop with r = (make-array (range tr))
with m = (matrix tr)
for i from 0 below (range tr)
do (setf (aref r i)

(loop for j from 0 below (domain tr)
sum (* (aref m i j) (aref vj))))

finally (return r)))

(defmethod mul ((tr Upper-Triangular-Transformation)
(v Vector))

(loop with r = (make-array (range tr))
with m = (matrix tr)
for i from 0 below (range tr)
do (setf (aref r i)

(loop for j from _ below (domain tr)
sum (0 (aref m i j) (aref v j))))

finally (return r)))

Figure 4: mul methods for two simple classes.

Fr

5 IMPLEMENTATION IN COMMON LOOPS 12

(setf ta (make-instance 'Matrix-Transformation :matrix a))
(setf ta-1 (inverse ta))

(mul ta-1 b) #(0.0 .999g205 100.000015 10000.0)

x -+ #(0.0 1.0000000 100.00000 10000.0)

Figure 5: Solving Am = b in Cactus.

J.

(defdass Inverse-Transformation :: an abstract class

super dasses
(Linear-Transformation)

:: slots
(sire))

I+

Figure 6: An abstract inverse class.

The key point is the existance of the generic inverse function, which returns
an inverse object appropriate for the type of transformation being inverted.

All inverse transformation classes inherit from the abstract class Inverse-
Transformation (see figure 6). Inverse-Transformation provides one slot, named
sire, which points to the transformation whose inverse this is.

Suppose we start with an upper triangular transformation. Then con-
structing an inverse is easy (see figure 7). The inverse method for Upper-
Triangular-Transformation simply creates an instance of Inverse-of-Upper-Triangular,
filling the sire slot with the argument of inverse.

So an instance of Inverse-of-Upper-Triangular is essentially just a pointer

Pa

5 IMPLEMENTATION IN COMMON LOOPS 13

(defmethod inverse ((self Upper-Triangular-Transformation))

(make-instance 'Inverse-of-Upper-Triangular :sire self))

(defdass Inverse-of-Upper-Triangular

:: super classes
(Inverse-Transformation)

:: slots
0)

(defmethod initialize ((self Inverse-of-Upper-Triangular)
(init-list list))

(setf (sire self) (getf init-list :sire)))

Figure 7: An instantiable inverse clans.

IL
I.

5 IMPLEMENTATION IN COMMON LOOPS 14

(defmethod mul ((tr Inverse-of-Upper-Triangular)
(v Vector))

(loop with r = (make-array (range tr))
with u = (matrix (sire tr))
with n - (domain tr)

back substitution loop:
for i from (- n 1) downto 0
do (setf (aref r i)

(/ (- (aref v i)
(loop for j from (+ i 1) below n

sum (* (aref u i j) (aref r
(aref u i i)))

finally (return r)))

Figure 8: The mul method for the inverse of upper triangular is back sub-
stitution.

to the original upper triangular transformation. What makes it an inverse
are its methods-for example, the mul method shown in figure 8, which uses
back substitution rather than matrix multiply.

To compute an inverse of a Matrix-Transformation, we factor it into a
product of transformations (like Upper-Triangular-Transformation) that can
each be inverted accurately and efficiently. For gaussian elimination with
partial pivoting the factoring is

A = (PoGoPiGi ... PnGnU),

so that
A-1 ,_(U- 1 G; 1 P;1 ... Ipj-1).

We have seen how to represent U- 1 , the representations of inverses of gauss
and pivot transformations are also straightforward.

0"%

5 IMPLEMENTATION IN COMMON LOOPS 15

(defdass Inverse-of-Matrix-Transformaton

:: super dasses
(Inverse-Transformation)

:: slots
(u-inverse
I-factors))

(defmethod mul ((tr Inverse-of-Matrix-Transformation)
(v Vector))

(loop with r = (make-array (range tr))
for factor in (I-factors tr)
do (mull factor r)
finally (return (mull (u-inverse tr) r))))

Figure 9: An inverse class for general matrix transformations.

The Inverse-of-Matrix-Transformation clas is shown in figure 9. It pro-
vides two slots, one to hold the inverse of the upper triangular factor and
another to hold a list of the inverses of the gauss and pivot factors. The mul
method is also shown. It simply iterates over the factors, using the generic
mull function to destructively modify the result vector, r, without allocating
temporary vectors at each iteration. (This strategy only works in situations
where all the factors are square.)

The actual factoring is done by the initialize method for Inverse-of-Matrix-
Transformation, us shown in figure 10. The construction is iterative. At the
ith step a pivot transformation is chosen that interchanges rows of A,-, (to

6 IMPLICATIONS 16

improve the numerical stability of the next step):

Then a gauss transformation is chosen to zero the sub-diagonal elements of
the ith column of A:

A,. GiXA.
Each P and G, affect only the lower right (n - i + 1) x (n - i + 1) block of
Ai. At the end, U +- A,- 1 is upper triangular. The chosen P's and Gi's
are actually the inverses of the factors of A, so they can be collected directly
in a list of the factors of A- 1.

The actual implementation, shown in figure 10, differs from the descrip-
tion in one significant way. We don't wish to allocate two new linear trans-
formation objects at each step (to hold A: and A,) so we use mul!, which
overwrites its second argument, to destructively convert a copy of the orig-
inal A to triangular form.

A the end of the iteration, u is a Matrix-Transformation whose sub-
diagonal elements are zero. To get the right kind of inverse, we need u to
be an Upper-Triangular-Transfomation. Fortunately, Common Loops allows
us to change the clam of the existing instance u.

This implementation is almost as efficient as the carefully coded Fortran
version in Linpack, which uses subtle knowledge of where seros are to save
space and avoid zero adds and multiplies at each step of the iteration. The
Cactus version gets similar savings in space and time in a more modular way.
Every clas is responsible for providing its instances with information that
allows them to be used efficiently and every method (for mul for example)
is responsible for using that information appropriately. For example, mul
methods for Gauss-Transformation take advantage of implicit block structure
to save time. An implementor of a decomposition can assume that opera-
tions between pre-defined transformation classes will be efficient and can
ignore internal details. For example, we can expect to get an efficient QR
decomposition (which is be a better choice than LU when A is not square) by
simply replacing Gauss-Transformation's with Householder-Transformation's
and need not worry about how internal details differ.

6 Implications

Although I have only discussed a single, somewhat simplified example, I
hope to have made a convincing case that linear algebra is a natural domain

.4.
4"~ .s,'4% V *4" ~e ',

6 IMPLICATIONS 17

(defmethod initialize ((self Inverse-of-Matrix-Transformation)

(mnit-list list))

(setf (sire self) (getf init-list :sire))

(loop with u = (copy self)
with g
with p

for i from 0 below (- (range self) 1)
do (setf p (choose-pivot-transformation u i))

(mull p V)
(setf g (choose-gauss-transformation u Q)
(mull g u)

collect p into 1-facs
collect £ into I-facs

finally
(change-dlais u (dais-namned 'Upper-Triangular-Transformation))
(setf (u-inverse self) (inverse u))
(setf (I-factors self) 1-facs)))

F

Figue 1: Gassin elmintionwit parialpivoing
I.

j

6 IMPLICATIONS 18

for object-oriented programming. It seems reasonable to expect similar value
in other numerical problems, like optimization, differential equations, and
statistical data analysis.

A full understanding of the implications of numerical computing for the
design of object-oriented programming systems requires a more complete
implementation than the current version of Cactus. However some points
are already clear.

6.1 A large class lattice

A comprehensive linear algebra system would contain a surprisingly large
number of classes-whose relationships may not be completely modeled by
an inheritance lattice. To get a rough estimate of how many classes there
might be, we can list several groups:

" Storage classes determine the Common Lisp data structures used to
hold the state of the transformation, like Matrix. Vector. List-of-Vectors.
and so on.

" Sparsity classes describe a patterns of zeros and/or other constants
within a given storage class. For example, Upper-Triangular-Transformation
asserts that all sub-diagonal elements of a matrix are exactly zero,
which is important to know in mul or inverse.

" Assertion classes declare that their transformations have a certain
property that in important in choosing the algorithm for one or more
methods. Some assertions are easy to verify once, like Symmetric, but
expensive to verify repeatedly. Others are difficult to verify directly
but may be known from outside information or deduced from the way
the transform is created, like Positive-Definite.

" Elementary transformations are created for the effect of composing -

with a particular instance, like Gauss, Householder, Givens[8 trans-
formations that are used in various triangularisation algorithms.

" Inverse-Transformation is an example of classes whose instance have a
special relationship to some other instance, and who might need to
change in some way if their sire changes.

U.

" tail lr mr" r r qr ,., .r • , sw .ew ,, .,.€i - '.Q - ir - 4 ,w . . ,., .d, ..- , v . , ..

, , ,; ,,',,. , , .. ,.. - . _ _ ... _ _, ... _ ... __ .

6 IMPLICATIONS 19

" A general algebraic expression class represents a linear transformation
as the sums and products of other transformations. Most of Linpack
and Eispack are devoted to replacing linear transformations by equiv-
alent algebraic expressions in transformations that are easier to deal
with. For example, inverse replaces a Matrix-Transformation by a prod-
uct of transformations that are individually easy to invert. It would be
very useful for the system to be able to deduce properties of an expres-
sion from the properties of its components, eg. the sum of symmetric
transformations is symmetric.

" Other expression classes involve operations like direct sum and quotient[9]
that -orrespond to block structure in matrices.

" If we have an explicit representation of more abstract vector spaces
than R", then we have the possibility o linear transformation classes
that are distinguished by their range and domain spaces.

Simply counting up all possible mixtures of classes like PositiveDefinite-
Square-Symmetric-Tridiagoenal-Matrix leads to hundreds, if not thousands of
Classes.

The potential complexity of the class lattice is intimidating and might
lead one to prefer the simplicity of two-dimensional arrays. However, that
apparent simplicity is misleading; a system like Linpack must deal with as
many types of linear transformations as an object-oriented system. The only
difference is that, in Fortran, the existance of the types and the methods
for using them are implicit in the code, rather than explicitly represented in
defdass's and defmethod'u.

A key issue in further development is designing a minimal and sufficient
class lattice. Even so, there are likely to be more possible classes then
there are instances at any time. It might conceivably be useful to provide
automatic generation of mixture classes, which raises the issue of how to
use the logical, mathematical structure relating the classes. For example,
asking the system to produce a class the inherits from both Triangular and
Symmetric ought to produce a Diagonal-Transformation class.

6.2 Multi-nmethods

The key operations in linear algebra (like mul and sum) dispatch on 2
or 3 arguments. The ability to dispatch on multiple arguments is one of

h'

REFERENCES 20

the more outstanding differences between Common Loops and most other
object-oriented languages.

Because of the large number of classes there may be as many as 104-106
distinct methods for a given generic function like mul. Good programming
tools are vital for merely keeping track, for example, of all the mul meth-
ods that have an Triangular-Transformation as one of their arguments. In
particular we want to take advantage of any possible shortcuts for filling in
method tables. Using class inheritance to provide defaults and more gener-
ally coercing a transformation to another class are traditional techniques[l].
There are also possibilities for using sophisticated method combination rules
to logically deduce the correct method.

6.3 Changing classes

The Change-dass operation provided in Common Loops is a natural opera-
tion for linear algebra. It is the implicit paradigm underlying Linpack and
Eispack: replace a given representation of a linear transformation by an al-
ternative that's more suitable. Change-class preserves 'eq-nem,* which is a
close analogy to Linpack, where the original matrix is usually overwritten by
its decomposition. Eq-nm preservation is essential if we allow destructive
modification of the state of linear transformations, which is unavoidable, at
least for the largest problems. Changing a single matrix element may also
cause a linear transformation to gain or lose properties like symmetry or
positive-definiteness, which should be reflected in the class of the transfor-
mation.

References

[1] ABELSON, H., SUSSMAN, G., AND SUSSMAN, J. (1985)
Structure and Interpretation of Computer Programs. MIT Press, Cam-
bridge, Mass.

[2] BOBROW, D.G., KAHN, K., KIozALES, G., MASINTER, L.,
STIFIK, M., AND ZDYBEL, F. (1985)
COMMONLOOPS: Merging Common Liap snd object-oriented pro-
g#rmming, Intelligent Systems Laboratory Series ISL-85-8, Xerox
PARC, 3333 Coyote Hill Road, Palo Alto, Ca. 94304.

..
V'

Va

W.--

www ~~~n~r~ rF[qF~''www~~wrw

REFERENC,,S 21

[31 BOBROW, D.G., KAHN, K., KIoZALEs, G., MASINTER, L.,
STEFIK, M., and ZDYBEL, F. (1986)
CommonLoopa: Merging Lip and Object-Oriented Programming, Pro-
ceedings OOPSLA'86 (SIGPLAN Notices 21: 11 p. 17-29).

[4] BURKE, G. and MOON, D. (1981)
LOOP Iteration Macro, MIT LCS TM-169.

[5] DONGARRA, J.J., MOLER, C.B., BUNCH, J.R., and STEWART,
G.W. (1979)
LINPACK Users' Guide. SIAM, Philiadelphia.

[6] GARBOW, B.S., BOYLE, J.M., DONGARRA, J.J., and MOLER,
C.B. (1977)
Matrix Eigensystem Routines-EISPACK Guide Extension, Springer-
Verlag, Berlin.

[71 GOLDBERG, A. and ROBSON, D. (193b)
Smalltalk-80. The Language and Its Implementation. Addison-Wesley,
Reading, Mans.

[8] GOLUB, G.H. and VAN LOAN, C.F. (1983)
Matrix Computations, The Johns Hopkins UNiversity Press, Baltimore.

[9] HALMOS, P.R. (1958)
Finite-dimensional Vector Spaces. Van Nostrand, Princeton, New Jersey.

[10] KEENE, S.E., and MOON, D.A. (1985)
Flavors: Object-oriented programming on Symbolics computera, pre-
sented at the Common Lisp Conference, Boston, Ma., December 1985;
Symbolics Inc., 11 Cambridge Center, Cambridge, Ms. 02142.

(11] MOON D.A. (1986)
Object-Oriented Programmin witA Flavor&, Proceedings OOPSLA'86
(SIGPLAN Notices 21: 11 p. 1-8).

[12] ROYLANCE, G. (1984)
Some Scientific Subroutines in Lisp, MIT A) Memo 774.

[131 SMITH, B.T., BOYLE, J.M., DONGARRA, J.J., GARBOW,
B.S., IKEBE, Y., KLEMA, V.C. and MOLER, C.B. (1976)
Matrix Eigensystem Routins-EISPACK Guide. 2nd Edition. Springer-
Verlag, Berlin.

.- 'I

REFERENCES 22

[141 STEELE, G.L. (1984)

Common Lisp. The Language. Digital Press.

[15] STEWART, G.W. (1973)
Introduction to Matrix Computations. Academic Press, New York.

I

'a

.' . I '", , ," ,4," 0." . ? ;'.?) ';";..:.-5 .:..'-.,. ," ,..,. ... : ? .;', .;...-5.;,.5.''..': "

w Ww

N &.u~.I~.-w
N

